Improved Spatial Pyramid Matching for Image Classification

نویسندگان

  • Mohammad Shahiduzzaman
  • Dengsheng Zhang
  • Guojun Lu
چکیده

Spatial analysis of salient feature points has been shown to be promising in image analysis and classification. In the past, spatial pyramid matching makes use of both of salient feature points and spatial multiresolution blocks to match between images. However, it is shown that different images or blocks can still have similar features using spatial pyramid matching. The analysis and matching will be more accurate in scale space. In this paper, we propose to do spatial pyramid matching in scale space. Specifically, pyramid match histograms are computed in multiple scales to refine the kernel for support vector machine classification. We show that the combination of salient point features, scale space and spatial pyramid matching improves the original spatial pyramid matching significantly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Classification Using Sparse Coding and Spatial Pyramid Matching

Recently, the Support Vector Machine (SVM) using Spatial Pyramid Matching (SPM) kernel has achieved remarkable successful in image classification. The classification accuracy can be improved further when combining the sparse coding with SPM. However, the existing methods give the same weight of patches of SPM at different levels. Clearly the discriminative powers of SPM at different levels are ...

متن کامل

Application of sparse coding with spatial pyramid matching for face expression classification

In this work I evaluate the performance of image classification method based on spatial pyramid matching for sparse codes, using the JAFFE database of facial expressions. I show that the method is comparable to other methods, typically used for such datasets, and I also introduce some attempts that I made towards the improvement of the algorithm.

متن کامل

A Multi-Scale Learning Framework for Visual Categorization

Spatial pyramid matching has recently become a promising technique for image classification. Despite its success and popularity, no prior work has tackled the problem of learning the optimal spatial pyramid representation for the given image data and the associated object category. We propose a Multiple Scale Learning (MSL) framework to learn the best weights for each scale in the pyramid. Our ...

متن کامل

Combined Descriptors in Spatial Pyramid Domain for Image Classification

Recently spatial pyramid matching (SPM) with scale invariant feature transform (SIFT) descriptor has been successfully used in image classification. Unfortunately, the codebook generation and feature quantization procedures using SIFT feature have the high complexity both in time and space. To address this problem, in this paper, we propose an approach which combines local binary patterns (LBP)...

متن کامل

Near Duplicate Image Identification with Spatially Aligned Pyramid Matching

A new framework, termed Spatially Aligned Pyramid Matching, is proposed for Near Duplicate Image Identification. The proposed method robustly handles spatial shifts as well as scale changes. Images are divided into both overlapped and non-overlapped blocks over multiple levels. In the first matching stage, pairwise distances between blocks from the examined image pair are computed using SIFT fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010